Нанотехнологии - УрФО

Перейти на основной сайт
ИА ИНВУР Логотип Инновационного портала УрФО
Вы здесь: Главная // Аналитика

Теплопроводностью можно управлять с помощью наноструктур

Добавлено: 2016-02-02, просмотров: 504



Теплопроводность — знакомое каждому из нас явление. Пусть и не все понимают, что означает термин. Представим для наглядности такую ситуацию: в горячей сауне можно с удобством расположиться на деревянной скамье или полке, температура которых достигает 100 градусов Цельсия, однако если коснуться металлического гвоздя с той же температурой, непременно будет ожог.

Разница в двух описанных случаях в том, что некоторые материалы, например, металлы, хорошо проводят высокую температуру, тогда как другие, такие как древесина, плохо. Именно поэтому обычно теплопроводность считают лишь параметром материала.

Однако теперь ученые из университета Ювяскюля, Финляндия, во главе с профессором Илари Маасилта, впервые продемонстрировали, что можно изменить теплопроводность материала на порядки величины, настраивая волноподобные свойства теплового потока с помощью наноструктур.

information_items_15758.jpg

Результаты опубликованы в издании Nature Communications. Исследование финансировалось Академией Финляндии.

Пригодились волновые свойства фононов

Высокую температуру принято понимать как множество двигающихся волн разных типов; атомы вибрируют, но не беспорядочно. Данные волны подчиняются законам квантовой механики, а это значит, что возбуждаются лишь определенные диапазоны длин волн, в зависимости от температуры.

Похожая ситуация и в тепловом излучении, где участвуют фотоны, из которых состоит также видимый свет. В случае с вибрацией материала частицы носят другое название — фононы; их описал Альберт Эйнштейн свыше 100 лет назад.

Волновая природа фононов никогда прежде не использовалась для управления передачей тепла. До сих пор передача тепла формировалась за счет помещения одного материала (например, наночастиц) внутрь другого, или за счет изменения шероховатости поверхностей. В обоих случаях фононы рассеиваются больше и потому переносят тепло менее эффективно.

therm-nano.jpg

И вот теперь ученые презентовали возможность изменить теплопроводность фонона, основанную на волновых свойствах частиц. Этого удалось добиться после изготовления нанопетли (так называемый фононный кристалл), чей период того же порядка, что и длина волны переносящих тепло фононов — в данном случае примерно 1 микрометр. Фононные волны взаимодействуют со структурой фононного кристалла и изменяют скорость почти на порядок. Поскольку волны перемещаются медленнее, теплопроводность сокращается. Эксперимент проводился при температуре около абсолютного нуля, чтобы увеличить длину волны тепловых фононов до масштаба, при котором становится возможным применение обычных инструментов для нанопроизводства.

В будущем данная концепция может использоваться разными способами. При низких температурах она поможет в развитии датчиков ультрачувствительного излучения, когда важен контроль над передачей тепла. Группа профессора Маасилта также проводит этот тип прикладных исследований.

Источник:

innovanews.ru